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1. Introduction 

Atmospheric aerosols interact with sun light by scattering and absorbing radiation. By changing 
irradiance of the Earth surface, modifying cloud fractional cover and microphysical properties and 
a number of other mechanisms, they affect the energy balance, hydrological cycle, and planetary 
climate [IPCC, 2007]. In many world regions there is a growing impact of aerosols on air quality 
and human health. 

The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and 
operational aerosol retrievals over land. With the wide swath (2300 km) of MODIS instrument, 
the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007] 
currently complemented with the Deep Blue method [Hsu et al., 2004] provides daily global view 
of planetary atmospheric aerosol. The MISR algorithm [Martonchik et al., 1998; Diner et al., 
2005] makes high quality aerosol retrievals in 300 km swaths covering the globe in 8 days. 

With MODIS aerosol program being very successful, there are still several unresolved issues in 
the retrieval algorithms. The current processing is pixel-based and relies on a single-orbit data. 
Such an approach produces a single measurement for every pixel characterized by two main 
unknowns, aerosol optical thickness (AOT) and surface reflectance (SR). This lack of information 
constitutes a fundamental problem of the remote sensing which cannot be resolved without a priori 
information. For example, MODIS Dark Target algorithm makes spectral assumptions about 
surface reflectance, whereas the Deep Blue method uses ancillary global database of surface 
reflectance composed from minimal monthly measurements with Rayleigh correction. Both 
algorithms use Lambertian surface model. 

The surface-related assumptions in the aerosol retrievals may affect subsequent atmospheric 
correction in unintended way. For example, the Dark Target algorithm uses an empirical 
relationship to predict SR in the Blue (B3) and Red (B1) bands from the 2.1 µm channel (B7) for 
the purpose of aerosol retrieval. Obviously, the subsequent atmospheric correction will produce 
the same SR in the red and blue bands as predicted, i.e. an empirical function of ρ2.1. In other 
words, the spectral, spatial and temporal variability of surface reflectance in the Blue and Red 
bands appears “borrowed” from band B7. This may have certain implications for the vegetation 
and global carbon analysis because the chlorophyll-sensing bands B1, B3 are effectively 
substituted in terms of variability by band B7, which is sensitive to the plant liquid water. 

This chapter describes a new recently developed generic aerosol-surface retrieval algorithm for 
MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm 
simultaneously retrieves AOT and surface bi-directional reflection factor (BRF) using the time 
series of MODIS measurements.  

MAIAC starts with accumulating 3 to 16 days of calibrated and geolocated level 1B (L1B) MODIS 
data. The multi-day data provide different view angles, which are required for the surface BRF 
retrieval. The MODIS data are first gridded to 1 km resolution in order to represent the same 
surface footprint at different view angles. Then, the algorithm takes advantage of the following 
invariants of the atmosphere-surface system: 1) the surface reflectance changes little during 
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accumulation period, and 2) AOT changes little at short distances (~25 km), because aerosols have 
a mesoscale range of global variability of ~50-60 km [Anderson et al., 2003]. Under these generic 
assumptions, the system of equations becomes over-defined and formally can be resolved. Indeed, 
we define the elementary processing area as a block with the size of N~25 pixels (25 km). With K 
days in the processing queue, the number of measurements exceeds the number of unknowns  

 KN2 > K+(3N)2 if K>3, (1) 

where K is the number of AOT values for different days, and 3 is the number of free parameters of 
the Li-Sparse Ross-Thick (LSRT) [Lucht et al., 2000] BRF model for a pixel.  

To simplify the inversion problem, the algorithm uses BRF, initially retrieved in B7, along with an 
assumption that the shape of BRF is similar between the 2.1 µm and the Red and Blue spectral 
bands: 
 );,();,( 0

7
0 ϕµµρϕµµρ λλ B

ijijij b= . (2) 
The scaling factor b is pixel-, wavelength-, and time-dependent. This physically well-based 
approach reduces the total number of unknown parameters to K+N2. Below, factor b is called 
spectral regression coefficient (SRC). 

The assumption (2) of similarity of the BRF shape is robust for most landcover types because the 
surface absorption coefficient, or inversely, surface brightness, is similar in the visible and 
shortwave infra-red (SWIR) spectral regions, and because the scale of macroscopic surface 
roughness, which defines shadowing, is much larger than the wavelength [Flowerdew and Haigh, 
1995]. One obvious exception is snow, which is very bright in the visible wavelengths and dark in 
the SWIR. The principle of spectral similarity of the BRF shape was extensively tested and 
implemented in ATSR-2 [Veefkind et al., 1998] and MISR [Diner et al., 2005] operational aerosol 
retrievals. 

The MAIAC algorithm is based on minimization of an objective function, so it can directly control 
the assumptions used. For example, the objective function is high if surface changed rapidly or if 
aerosol variability was high on one of the days. Such days are filtered and excluded from the 
processing. The algorithm combines the block-level and the pixel-level processing, and produces 
the full set of parameters at 1 km resolution. 

From historical prospective, the new algorithm inherits from multiple concepts developed by the 
MISR science team, from using the rigorous radiative transfer model with non-Lambertian surface 
in aerosol/surface retrievals [Diner et al., 1999; 2001] to the concept of image-based rather than 
pixels-based aerosol retrievals [Martonchik et al., 1998]. The latter idea, in a different 
implementation, was proposed in the Contrast Reduction method by Tanre et al. [1988], who 
showed that consecutive images of the same surface area, acquired on different days, can be used 
to evaluate the AOT difference between these days. 

MAIAC is a complex algorithm which includes water vapor retrievals, cloud masking, aerosol 
retrievals and atmospheric correction. The separate processing blocks are interdependent: they 
share the data through the common algorithm memory and may update each other’s output. For 
example, the cloud mask is updated during both aerosol retrievals and atmospheric correction. 
Section 2 of this chapter provides an overview of MAIAC processing. Section 3 presents the 
radiative transfer basis for the aerosol retrievals and atmospheric correction algorithm, which are 
described in sections 4-5, respectively. Section 6 presents MAIAC cloud mask algorithm. Finally, 
section 7 presents examples of MAIAC performance and results of AERONET validation. The 
chapter is concluded with a summary. 
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2. MAIAC Overview 
The block-diagram of MAIAC algorithm is shown in Figure 1.  

1) The received L1B data are gridded, split in 600 km Tiles, and placed in a Queue with the 
previous data. The size of the Tile is selected to fit the operational memory of our workstation. As 
a reminder, MODIS uses 1000 km Tiles in operational processing. In order to limit variation of the 
footprint with changing view zenith angle (VZA), the resolution is coarsened by a factor of 2. For 
example, the grid cell size is 1 km for MODIS 500m channels B1-B7. We use the MODIS land 
gridding algorithm [Wolfe et al., 1998] with minor modifications that allow us to better preserve 
the anisotropy of signal in the gridded data when measured reflectance is high, for example over 
snow, thick clouds or water with glint.  

2) The column water vapor is retrieved for the last Tile using MODIS near-IR channels B17-B19 
located in the water vapor absorption band 0.94 µm. This algorithm is a modified version of [Gao 
and Kaufman, 2003]. It is fast and has the average accuracy of ±5-10% over the land surface 
[Lyapustin and Wang, 2007]. The water vapor retrievals are implemented internally to exclude 
dependence on other MODIS processing streams and unnecessary data transfers.  

3) The time series of measurements helps to develop a high quality cloud mask (CM). It is based 
on the notion that the surface spatial pattern is stable and reproducible in the short time frame in 
cloud-free conditions, whereas clouds randomly disturb this pattern. The algorithm uses 
covariance analysis to identify cloud-free blocks. On this basis, it builds a reference clear-skies 
image of the surface, which is further used in the pixel-level cloud masking. The MAIAC CM 
algorithm has an internal land-water-snow dynamic classification, which guides the algorithm 
flow. 

4) The main algorithm simultaneously retrieves the block-level AOT for K-days and N2 values of 
the spectral regression coefficient bij for the Blue (B3) band. This algorithm turns on when the B7 
BRF is known. Otherwise, MAIAC implements a simplified version of the MODIS Dark Target 
algorithm.  

5) The AOT computed in the previous step has a low resolution of 25 km. On the other hand, 
knowledge of SRC provides the Blue band BRF from Eq. 2 at a grid resolution. With the boundary 
condition known, the Blue band AOT in this step is retrieved at 1 km resolution.  

6) The ratio of volumetric concentrations of coarse-to-fine aerosol fractions (schematically called 
Angstrom exponent) is calculated for the last Tile at the grid resolution. This parameter selects the 
relevant aerosol model and provides spectral dependence of AOT for the atmospheric correction. 
The AOT and Angstrom parameter retrievals are done simultaneously, which is indicated by two 
arrows between processing blocks 5 and 6.  

7) Finally, surface BRF and albedo are retrieved at grid resolution from the K-day Queue for the 
reflective MODIS bands. 
 
2.1 Implementation of Time Series Processing 
The MAIAC processing uses both individual grid cells, also called pixels below, and fixed-size 
(25×25 km2) areas, or blocks, required by the cloud mask algorithm and SRC retrievals. In order 
to organize such processing, we developed a framework of C++ classes and structures (algorithm-
specific Containers). The class functions are designed to handle processing in the various time-
space scales, for example at the pixel- vs block-level, and for a single (last) day of measurements 
vs all available days in the Queue, or for a subset of days which satisfy certain requirements 
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(filters). The data storage in the Queue is efficiently organized using pointers, which avoids 
physically moving the previous data in memory when the new data arrive. 

The structure of the Queue is shown schematically in Figure 2. For every day of observations, 
MODIS measurements are stored as Layers for reflective bands 1-7 and thermal band 31, all of 
which are required by the CM algorithm. Besides storing gridded MODIS data (Tiles), the Queue 
has a dedicated memory (Q-memory) which accumulates ancillary information about every block 
and pixel of the surface for the cloud mask algorithm (Refcm data structure). It also keeps 
information related to the history of previous retrievals, for example spectral surface BRF 
parameters and albedo. Given the daily rate of MODIS observations, the land surface is a 
relatively static background. Therefore, knowledge of the previous surface state significantly 
enhances both the accuracy of the cloud detection, and the quality of atmospheric correction, for 
example, by imposing a requirement of consistency of the time series of BRF and albedo. 
 
3. Radiative Transfer Basis 
MAIAC resulted from an effort to develop an operational algorithm with explicit minimization 
where parameters of the surface BRF model can be calculated analytically from measurements. A 
similar approach developed by Martonchik et al. [1998] for MISR features a relatively small size 
of the look-up table (LUT) and a high efficacy, which is critically important for operational 
algorithm. We will be using a high accuracy semi-analytical formula for the top-of-atmosphere 
(TOA) radiance derived with the Green’s function method [Lyapustin and Knyazikhin, 2001; 
Lyapustin and Wang, 2005]. Below, τ is atmospheric optical thickness, πSλ is spectral 
extraterrestrial solar irradiance, and s=( θµ cos= , ϕ) is a vector of direction defined by zenith (θ) 
and azimuthal (ϕ) angles. The z-axis is pointed downwards, so µ0>0 for the solar beam and µ<0 
for the reflected beam. The TOA radiance ),( 0 ssL  is expressed as a sum of the atmospheric path 
radiance (D), and surface-reflected radiance (Ls), directly and diffusely transmitted through the 
atmosphere: 

 ),(),( 00 ssDssL = + ),(),( 00 ssLessL d
ss +

− µ
τ

. (3) 

The surface-reflected radiance is written as: 

 ≅),( 0 ssLs Sλµ0
0/µτ−e { ),( 0 ssρ + )()( 0210 µρµραc } + ∫

+Ω

′′′′ sdssssDs µρ
π
α ),(),( 0 , (4) 

where sD  is path radiance incident on the surface, c0 is spherical albedo of the atmosphere, and 

 ∫
+Ω

′′= sdss ),(
2
1)(1 ρ
π

µρ , ∫
−Ω

= dsss ),(
2
1)( 002 ρ
π

µρ . (5) 

α is a multiple reflection factor, 1
00 ))(1( −−= cq µα , where q is surface albedo. The diffusely 

transmitted surface-reflected radiance at the TOA is calculated from Ls with the help of 1D diffuse 
Green’s function of the atmosphere: 
 ),( 0 ssLd

s  = ∫
−Ω

1101 ),(),( dsssLssG s
d . (6) 

The function πGd is often called bi-directional upward diffuse transmittance of the atmosphere. 
The method of its calculation was discussed in detail in [Lyapustin and Knyazikhin, 2001]. The 
surface albedo is defined as a ratio of reflected and incident radiative fluxes at the surface: 

 )(/)()( 000 µµµ DownUp FFq = , (7a) 



 5

 )( 0µ
DownF =πSλµ0

0/µτ−e + ∫
+Ω

′′′ sdssDs µ),( 0 = )()( 00 µµ Dif
s

Dir
s FF + , (7b) 

 sdssDqqeSF s
Up ′′′′+= ∫

+Ω

− ),()()()( 0202
/

00
0 µµµµπµ µτ

λ , ∫
−Ω
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These formulas give an explicit expression for the TOA radiance as a function of surface BRF. 
The accuracy of the above formulas is high, usually within a few tenths of a percent [Lyapustin 
and Knyazikhin, 2001]. Below we will use the TOA reflectance, which is defined as 
 )/( 0 λλλ µ SLR = . (8) 
 
3.1 Expression for the TOA reflectance using LSRT BRF model 
Based on the described semi-analytical solution, TOA reflectance can be expressed as an explicit 
function of parameters of the BRF model. We are using a semi-empirical Li Sparse – Ross Thick 
(LSRT) BRF model [Lucht et al., 2000]. This is a linear model, represented as a sum of 
Lambertian, geometric-optical, and volume scattering components: 
 ),,(),,(),,( 000 ϕµµϕµµϕµµρ V

V
G

GL fkfkk ++= . (9) 
It uses predefined geometric functions (kernels) Gf , Vf  to describe different angular shapes. The 
kernels are independent of the land conditions. The BRF of a pixel is characterized by a 
combination of three kernel weights, TVGL kkkK },,{=

r
. The LSRT model is used in the 

operational MODIS BRF/albedo algorithm [Schaaf et al., 2002]. 

The substitution of Eq. (9) into Eqs. (3-7) and normalization to the reflectance units gives the 
following expressions for the surface-reflected signal (the last two terms of Eq. (3)):  

 ),,( 0 ϕµµsR = 0µ
τ−
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G
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The surface albedo is written as: 

 )( 0µq = )( 0
1

0 µ−E {µ0
0µ
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3
0

3
0002 µµµµ V

V
G
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Different functions of these equations represent different integrals of the incident path radiance 
(Ds) and atmospheric Green’s function (G) with the BRF kernels. They were described in 
[Lyapustin and Wang, 2005] along with the method of numerical calculation. Below, we give only 
the integral expressions for these functions: 
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The subscript k in the above expressions refers to either geometric-optical (G) or volumetric (V) 
kernels, and the supplementary functions of the BRF kernels are given by: 
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The diffuse and total spectral surface irradiance are calculated from (7b) as: 

 )/()()( 000 λπµµ SFE Difd = , )/()()( 000 λπµµ SFE Down= . (23) 

Let us re-write equations 10-11 separating the kernel weights. First, separate the small terms 
proportional to the product )( 020 µρc  into the non-linear term: 

),( 0 µµnlR = 0cα )( 02 µρ 0µ
τ−

e { µ
τ−

e )(1 µρ  + )()()( 1111 µµµ V
V

G
GavL GkGkGk ++ }. (24) 

Second, collect the remaining multiplicative factors for the kernel weights: 
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1
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);,( 0 ϕµµkF  = { 0µ
τ−

e ),,( 0 ϕµµkf + ),,( 0
11

0 ϕµµαµ kD− } µ
τ−

e  +  

 0µ
τ−

e ),,( 0
1 ϕµµkG + ),,( 0

11
0 ϕµµαµ kH− , k=V, G. (26) 

With these notations, the TOA reflectance becomes: 

),,(),,( 00 ϕµµϕµµ DRR = + ),( 0 µµLLFk + ),,( 0 ϕµµGG Fk + ),,( 0 ϕµµVV Fk + ),( 0 µµnlR . (27) 

This equation, representing TOA reflectance as an explicit function of the BRF model parameters, 
provides the means for an efficient atmospheric correction.  

Let us derive a modified form of this equation which is used in the aerosol retrievals. The last non-
linear term of formula 27, which describes multiple reflections of the direct-beam sunlight 
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between the surface and the atmosphere, is small ( 0qcRnl ∝ ), and can be neglected for simplicity 
of further consideration. The functions Fk are still weakly non-linear via parameter α, which 
describes multiple reflections of the diffuse incident sunlight. By setting α=1, we omit this non-
linearity and equation (27) becomes a linear function of the BRF parameters. With an additional 
assumption of spectral invariance of the BRF shape (Eq. (2)), formula (27) can be re-written for 
the pixel (i, j) and observation day k as: 

 ),()( kDk
ij RR τλλ ≅ + ),()( k

ijij Yb τλλ , (28) 

where )(λijb  is spectral regression coefficient for a given spectral band, and function 

 ),( k
ijY τλ = ),(7, kLBL

ij Fk τλ + ),(7, kGBG
ij Fk τλ + ),(7, kVBV

ij Fk τλ  (29) 

can be calculated from the look-up table (LUT) for a given geometry, AOT and wavelength, once 
the BRF parameters in band B7 for the pixel (i, j) are known. The LUT stores functions 1

kf , 2
kf , 

3
kf , which depend on geometry of observations, and functions 1

kD , 3
kD , avG , 1

kG , 11
kG , 1

kH , dE0 , 

0E , DR , which depend on geometry, selected aerosol model and AOT. Index k refers to either 
volumetric (V) or geometric-optical (G) BRF kernel function. The pressure- and water vapor 
corrections of the LUT functions are performed with the algorithm described in [Lyapustin and 
Wang, 2007]. 

 
4. Aerosol Algorithm 
The aerosol algorithm consists of two steps: deriving SRCs, and retrieving AOT and Angstrom 
exponent. The SRC retrievals use parametric formula (28). 

4.1 SRC Retrievals 
Let us assume that the ancillary information for the aerosol retrievals, including water vapor, cloud 
mask, and surface BRF in band B7, is available. Let us also assume that gridded TOA MODIS 
reflectance data is available for 3≤K≤16 cloud-free days, which form the processing Queue. Our 
goal is to derive the set of K AOT values for different days (orbits), and N2 SRC values for the 
Blue band (B3) for a given 25 km block of the surface. The SRC algorithm is implemented in 
three steps: 

1) Select the clearest day from the Queue; 
2) Calculate the AOT difference for every day with respect to the clearest day, 0τττ −=∆ kk ; 
3) Find AOT on the clearest day, 0τ . At this step, the algorithm simultaneously generates the full 

set of spectral regression coefficients. 

The first task is solved as follows. Initially, the SRCs are calculated for every day and every pixel 
separately using formula (28) for AOT=0. For a given pixel, the coefficient k

ijb  is lowest on the 
clearest day because its value is increased by the path reflectance on hazier days. Therefore, the 
clearest day is selected as a day with the lowest on average set of coefficients k

ijb  in the block. 

In the next step (2), the AOT difference between the day k and the clearest day is calculated 
independently for every day of the Queue by minimizing the difference 
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,
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kk
ij

Clear
ij

k bb
N

F ττ ∆=∆−= ∑ . (30) 

The SRCs for the clearest day ( Clear
ijb ) have been calculated for 0τ =0 in step 1. When solving Eq. 

(30), SRCs for the day k are re-calculated for the increasing values of AOT from the LUT kτ  
( kkk ττττ =−=∆ 0 ) until the minimum is reached. This operation is equivalent to simultaneous 
removal of bias and “stretching” the contrast for a given block that minimizes the overall 
difference. 

In step 3), AOT on the clearest day is found by minimization of rmse between the theoretical 
reflectance and the full set of measurements for K days and N2 pixels: 

 }min{)}({ 0
,

2
0

,,
2 τττ =∆+−= ∑∑

K ji

kkTh
ij

kMeas
ij RRF . (31) 

To calculate theoretical reflectance with Eq. (28), one needs to know the coefficients ijb . These 
are calculated using the first assumption described in Introduction, namely that the surface 
reflectance changes little during K days. Therefore, for a given pixel and given value 0τ , the SRC 
can be found by minimizing the rmse over all days of the Queue: 

 }min{)}({ 2,,
ij

K

kkTh
ij

kMeas
ijij bRRF =−= ∑ τ , kk τττ ∆+= 0 , (32) 

which is solved by the least-squares method ( 0/ =∂∂ ijij bF ) with the analytical solution: 

 ∑∑ −=
K

k
ij

K

k
ij

kDkMeas
ijij YYRRb 2, )}({/)()]([ τττ . (33) 

Thus, given the aerosol model, Eq. 31 becomes parameterized in terms of the only parameter 0τ . 
Equations (31) and (32)  are positively defined quadratic forms which have unique solutions. To 
solve these equations numerically, the MAIAC algorithm incrementally increases the AOT (e.g. 0τ  
in Eq. (31)) using the LUT entries, until the minimum is found. Because the discretization of LUT 
in AOT is relatively coarse, the algorithm finds the “bend” point, where function F2 starts 
increasing, approximates the last three points, encompassing the minimum, with quadratic 
function, and finds the minimum analytically. The set of SRCs is calculated with the final value 

0τ  from Eq. (33). 

This algorithm was developed and optimized through a long series of trial and error. It requires at 
least three clear or partially clear days in the Queue for the inversion, with at least 50% of the 
pixels of the block being clear for three or more days. The algorithm has a self-consistency check, 
verifying whether the main assumptions hold. This is done during step 2 processing. If the surface 
had undergone a rapid change during the accumulation period (e.g. a snowfall, or a large-scale 
fire, flooding or rapid landcover conversion, with the size of disturbance comparable to the block 
size), or if the AOT changes significantly inside a given block on day k, then the value of rmse 

kF1  remains high. Currently, the algorithm excludes such days from the processing Queue based 

on a simple empirically established threshold kF1 ≥0.03. In regular conditions, the value kF1  is 
usually lower than 0.01-0.015. 



 9

Retrieving SRCs is a well-optimized and a relatively fast process. Nevertheless, in order to reduce 
the total processing time, MAIAC makes these retrievals with the period of two-three days, which 
is sufficient to track a relatively slow seasonal variability of the land surface. For every block, the 
retrieved spectral regression coefficients are stored in the Q-memory, along with the band B7 
LSRT coefficients. They are used as ancillary information for the aerosol retrievals at 1 km grid 
resolution, which are described next. 
 
4.2 Aerosol Retrievals 
With spectral regression coefficients retrieved, the surface BRF in every grid cell in the Blue band 
becomes known (Eq. 2). Further, the AOT and Angstrom parameter are retrieved at 1 km 
resolution from the last Tile of MODIS measurements. 

This algorithm requires a set of aerosol models with increasing particle size and asymmetry 
parameter of scattering. The aerosols are modeled as a superposition of the fine and coarse 
fractions, each described by a log-normal size distribution. For example, for the continental USA 
we are currently using the weak absorption model with the following parameters for the fine (F) 
and coarse (C) fractions: median radius F

vR =0.14 µm, C
vR =2.9 µm; standard deviation Fσ =0.38 

µm Cσ =0.75 µm; spectrally independent real part of refractive index nr=1.41, and imaginary part 
of refractive index ni={0.0044, 0.0044, 0.0044, 0.002, 0.001} at wavelengths {0.4, 0.55, 0.8, 1.02, 
2.13} µm, respectively. Parameter ni is linearly interpolated between five grid wavelengths. By 
varying the ratio of volumetric concentrations of coarse and fine fractions, η = Coarse

vC / Fine
vC , a 

wide range of asymmetry (size) parameter is simulated. The LUT is originally computed for the 
fine and coarse fractions separately. When MAIAC reads the LUT, it generates a series of mixed 
aerosol LUTs for different values η ={0.2; 0.5; 1; 2; 5, 10}, which are stored in the operational 
memory. In this sequence, value η =0.5 gives a model that is close to the urban continental weak 
absorption (GSFC) model from AERONET classification [Dubovik et al., 2002], whereas the 
values η=2-5 are more representative of the mineral dust. Following the MISR aerosol algorithm 
[Diner et al., 1999; 2001; Martonchik et al., ch. 4], a modified linear mixing algorithm [Abdou et 
al., 1998] is used to mix the LUT radiative transfer (RT) functions for the fine and coarse 
fractions. This algorithm retains high accuracy with increasing AOT and aerosol absorption. 

For each pixel, the retrieval algorithm goes through a loop of increasing values of fractional ratio 
η, and using known surface BRF );,();,( 0

73
0

3 ϕµµρϕµµρ B
ij

B
ij

B
ij b=  it computes AOT (τij) in the 

Blue band by fitting theoretical TOA reflectance to the measurement 

 3,3, );( BMeas
ijij

BTheor RR =τη . (34) 

In the next step, a spectral residual is evaluated using on the Blue (B3), Red (B1), and SWIR (B7) 
bands: 

 }min{))}(({ 2,, ηητχ
λ

λλ =−= ∑ kTheor
ij

Meas
ijij RR . (35) 

The procedure is repeated with the next value η until the minimum is found. Theoretical 
reflectance in (35) is computed with the LSRT BRF parameters from the previous cycle of 
atmospheric correction, which are stored in the Q-memory. 

Because MODIS measurements provide only a spectral slice of information, MAIAC does not 
attempt MISR-like retrievals for multiple aerosol models with different absorption and sphericity 
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of particles. Instead, it follows the MODIS Dark Target approach [Levy, 2007; also ch. 5] where 
the aerosol fractions and their specific absorption properties are fixed regionally. 

The spectral sensitivity of measurements to variations of the aerosol model in clear atmospheric 
conditions, especially at longer wavelengths, is limited. Currently, growth of the MODIS footprint 
with the scan angle is the main source of uncertainty in MAIAC’s knowledge of the surface 
spectral BRF. These errors, although small, can be costly if very asymmetric aerosol model with 
large AOT values is selected when the atmosphere is actually very clean. For these reasons, the 
full minimization procedure (34-35) is performed only when the retrieved optical thickness for the 
standard continental model (η =0.5) exceeds 0.3. Otherwise, a single value of η =0.5 is used and 
AOT is reported for these background conditions.  

The retrieval examples given below were generated using the single low absorption aerosol model 
described above. In future, the aerosol model will be geographically prescribed based on the 
AERONET climatology [Holben et al., 2001]. The following work is underway: we are studying 
the AERONET-based classification used in the MODIS aerosol algorithm [Levy, 2007] and plan 
to investigate a MISR level 3 aerosol product, which provides an independent global aerosol 
climatology over land. 
 
5. Atmospheric Correction 
Determination of spectral surface BRF is an integral part of MAIAC’s aerosol retrieval process. 
Below, we describe the atmospheric correction algorithm implemented in MAIAC. 

Once the cloud mask is created and aerosol retrievals performed, the MAIAC algorithm filters the 
time series of MODIS measurements for every pixel and places the remaining clear-skies data in a 
“container”. The filter excludes pixels with clouds and cloud shadows, as well as snow-covered 
pixels as detected by the CM algorithm during land-water-snow classification. We also filter out 
pixels with high AOT (>0.9) where sensitivity of measurements to surface reflectance decreases.   
The container stores measurements along with the LUT-based RT functions for the cloud-free 
days of the Queue. If the number of available measurements exceeds 3 for a given pixel, then the 
coefficients of LSRT BRF model are computed. The retrieval diagram is shown in Figure 3. 
 
5.1 Inversion for LSRT Coefficients 
In the operational MODIS land processing, BRF is determined in two steps: first, the atmospheric 
correction algorithm derives surface reflectance for a given observation geometry using 
Lambertian approximation [Vermote et al., 2002], and next, three LSRT coefficients are retrieved 
from the time series of surface reflectance accumulated for a 16-day period [Schaaf et al., 2002]. 
The Lambertian assumption simplifies the atmospheric correction but creates biases in the surface 
reflectance which depend on the observation geometry and atmospheric opacity. It is known that 
Lambertian assumption creates a flatter BRF pattern while the true BRF is more anisotropic 
[Lyapustin, 1999]. 

MAIAC algorithm derives LSRT coefficients directly by fitting the measured TOA reflectance 
accumulated for a period of 4-16 days. The inversion is based on equation (27) derived earlier. 
This equation provides an explicit parameterization of TOA reflectance in terms of the BRF model 
parameters K

v
={kL, kG, kV}T. 

The quasi-linear form of equation (27) leads to a very efficient iterative minimization algorithm:   
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where index j lists measurements for different days, and n is the iteration number. Equation (36) 
provides an explicit least-squares solution for the kernel weights. In a matrix form, the solution is 
written as: 
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In the first iteration, the small non-linear term is set to zero, 0)0( =nl
jR , and the multiple reflection 

factor α (see sec. 3) is set to one, 1)0( =α . These parameters are updated once, after the BRF 
coefficients are calculated in the first iteration. Except for snow-covered surfaces, the problem 
converges with high accuracy in two iterations in all conditions because the non-linear terms are 
small. The described algorithm is very efficient computationally. 

5.2 Solution Selection and Update 
Although the LSRT model leads to an efficient BRF retrieval algorithm, there are several caveats 
associated with this model. The LSRT kernels are not orthogonal, they are not positive-only 
functions, and they are normalized in somewhat arbitrary fashion not linked to the radiative 
transfer. These factors reduce the stability of solution upon small perturbation of measurements 
and may lead to non-uniqueness of solution. The high goodness-of-fit at the angles of 
measurements does not always guarantee the correct shape of the retrieved BRF, and may result in 
negative BRF values at other angles. The albedo, being an integral function of BRF, is especially 
sensitive to the peculiarities of a particular BRF shape. For these reasons, we developed several 
tests to remove unrealistic solutions. 

The initial validation of solution (see Figure 3) checks that the maximal difference over all days of 
the Queue between measured and computed TOA reflectance does not exceed a specified 
threshold ( LSRTMeas RR − >0.08). The day (measurement) with higher deviation is excluded from 
the Queue and the retrieval is repeated. 

If the solution provides a good agreement with measurements for all days, the algorithm verifies 
that values of the direct-beam albedo (q: also function )( 02 µq  in Eq. (7c)) at SZA=15o, 45o, 60o 
are positive. Finally, the new solution must be consistent with the previous solution: 

)45()45( Pr oevo qq − <∆(λ). ∆ is the band-dependent threshold currently equal to 0.04 (blue), 0.05 
(green and red), 0.1 (NIR and shortwave infrared bands, B4-B6), and 0.06 for band B7. The 
thresholds are relatively loose to allow variations in the solution for surface reflectance. The 
consistency of the time series of BRF and albedo is characterized by a parameter status. Initially, 
the confidence in the solution is low (status=0). Each time, when the new retrieval agrees with the 
previous retrieval, the value of status increases by 1. When the status reaches the value of 4, the 
retrieval is considered reliable.  
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When the new solution is validated, the coefficients of BRF model and direct-beam albedo q(45o), 
stored in the Q-memory are updated. The update is performed with relaxation designed to mitigate 
random noise of retrievals: 

 NewKλ

r
= ( NewKλ

r
 + evK Pr

λ

r
)/2. (38) 

This updating method increases the quality of BRF and albedo product when the surface is 
relatively stable, but it delays response of solution to the surface changes. 

Often, the solution for some pixels or for the full area cannot be found because of lack of clear-
skies measurements. In these cases, MAIAC assumes that the surface does not change and fills in 
the gaps with the previous solution for up to 32-day period. This is the most natural way of gap-
filling with specific solution for a given pixel under the assumption of stable surface. The gap-
filled pixel is marked as “Extended” in the quality assurance (QA) value with parameter 
QA.nDelay giving the number of days since the last reliable solution. 

5.3 MAIAC Surface Reflectance Products 
MAIAC computes two main products at 1 km resolution for seven 500m MODIS bands, i.e. a set 
of BRF coefficients and the surface albedo. The albedo is defined by Equation (7a) as a ratio of 
surface-reflected to incident radiative fluxes. Thus, it represents a true albedo at a given solar 
zenith angle (SZA) in ambient atmospheric conditions, the value which can be directly compared 
to the ground-based measurements. 

MAIAC also computes several derivative products useful for science data analysis and validation: 
1) NBRF: a Normalized BRF, which is computed from LSRT parameters for the common 
geometry of nadir view and SZA = 45o. This product is similar to MODIS NBAR (nadir BRF-
adjusted reflectance) product (part of MOD43 suite). With the geometry variations removed, the 
time series of NBRF is useful for studying vegetation phenology, performing surface 
classification, etc. 
2) IBRF: an instantaneous (or one-angle) BRF for specific viewing geometry of the last day of 
observations. This product is calculated from the latest MODIS measurements assuming that the 
shape of BRF, known from previous retrievals, has not changed. To illustrate computation of 
IBRF, let us re-write equation (27) for the measured TOA reflectance as follows: 

 ),,(),,( 00 ϕµµϕµµ DRR =  + ),,( 0 ϕµµSurfcR , (39) 

where RSurf combines all surface related terms and can be calculated using previous solution for 
BRF ( λBRF ) and retrieved aerosol information. c is spectrally-dependent scaling factor. Then,  

 ),,(),,( 00 ϕµµϕµµ λλλ BRFcIBRF = . (40) 

Below, this algorithm will be referred to as scaling. This description was given as an illustration. 
In reality, RSurf is a non-linear function so that parameter cλ and IBRF are computed accurately 
using formulas of sec. 3. 

The algorithm computing scaling coefficient (and IBRF) is shown in Figure 3 on the right. First, 
the algorithm filters out measurements which differ from theoretically predicted TOA reflectance 
based on previous solution ( LSRT

QR ) by more than factor of ∆(λ). Then, scaling coefficients are 
computed, and the consistency requirement is verified as follows: 0.8<cλ<1.2. If all conditions are 
satisfied and the status of pixel is high (status≥4), then the Q-memory is updated with the scaled 
solution:  
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 NewKλ

r
=

2
1+λc evK Pr

λ

r
. (41) 

The time series processing is intrinsically controversial when surface changes rapidly. On the one 
hand, one needs all available cloud-free measurements and maximal time window in order to 
reduce the RMSE. This approach, which mitigates the noise of measurements, including that of 
gridding and residual clouds, and which ensures robust BRF shape, is best for stable periods, for 
example for natural ecosystems in summer time in mid-latitudes. On the other hand, detecting and 
tracking surface changes like spring green-up or fall senescence requires the least possible number 
of days in the Queue. Such retrievals tend to have more spatial and spectral noise. Moreover, it is 
difficult to assess reliability of such solutions when the surface reflectance changes daily with 
possible data gaps due to clouds. Based on our experience, the combination of one-day solution 
(IBRF) and 16-day solution (NBRF) with an update from the last day of measurements (41) 
combine both the accuracy and an ability to track surface changes.  

Besides faster response to the surface change, our update strategy assures fast removal of the 
retrieval artifacts, mainly residual clouds, which turn out to be the most common problem. 

While the response of the 16-day solution may still be delayed, the IBRF tracks spectral changes 
immediately. The update of Q-memory with latest measurements with equation (41) was found to 
significantly accelerate response of the LSRT coefficients ( λK

r
), and hence of NBRF, to changing 

surface conditions. Overall, the IBRF is better suited for analysis of the fast surface processes and 
detection of the rapid surface changes. 
6. MAIAC Cloud Mask 
The MAIAC cloud mask is a new algorithm making use of the time series of MODIS 
measurements and combining an image- and pixel-based processing. With a high frequency of 
MODIS observations, the land surface can be considered as a static or slowly changing 
background contrary to ephemeral clouds. This offers a reliable way of developing the 
“comparison clear-skies target” for the CM algorithm. An early example of such an approach is 
the ISCCP CM algorithm [Rossow and Garder, 1993] developed for geostationary platforms. It 
builds the clear-skies composite map from the previous measurements and infers CM for every 
pixel by comparing a current measurement with the clear-skies reference value. The uncertainty of 
the reference value, caused by the natural variability and sensor noise, is directly calculated from 
the measurements. 

The MAIAC cloud mask is a next step in evolution of this idea. It uses covariance analysis to build 
reference clear skies images (refcm) and to accumulate a certain level of knowledge about every 
pixel of the surface and its variability, thus constructing rather comprehensive comparison targets 
for cloud masking. The reference image contains a clear-skies reflectance in MODIS band 1 
(0.645 µm). In order to account for the effects related to scan angle variation, e.g. pixel size 
growth, surface BRF effect or reduction of contrast at higher view zenith angles (VZA), two 
reference clear-skies images are maintained by the algorithm, refcm1 for VZA≈0-45o and refcm2 
for VZA=45o-60o. In addition to refcm, the Q-memory also stores the maximal value (r1max) and 
the variance (σ1) of reflectance in band 1 as well as the brightness temperature contrast 
(∆BT=BTmax-BTmin) for each 25×25 km2 block. Analysis of MODIS data shows that thermal 
contrast (∆BT) is a rather stable metric of a given land area in clear conditions. In partially cloudy 
conditions, the contrast increases because BTmin is usually lower over clouds. 
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The new CM algorithm has an internal surface classifier, producing a dynamic land-water-snow 
(LWS) mask, and a surface change mask. These are an integral part of MAIAC guiding both cloud 
masking and further aerosol-surface reflectance retrievals when the surface changes rapidly as a 
result of fires, floods or snow fall/ablation. The cloud mask generated by the CM algorithm is 
updated during aerosol retrievals and atmospheric correction, which makes it a synergistic 
component of MAIAC. This complex approach increases the overall quality of cloud mask. 

Below, we briefly describe the algorithm constructing the reference clear-skies image (refcm), and 
an overall decision logic in cloud masking. Further details of the algorithm can be found in 
[Lyapustin et al., 2008]. 
 

6.1 Building Reference Clear Skies Image 
The clear-skies images of a particular surface area have a common textural pattern, defined by the 
surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This 
pattern changes slowly compared with the daily rate of global Earth observations. Clouds 
randomly change this pattern, which can be detected by covariance analysis. The covariance is a 
metric showing how well the two images X and Y correlate over an area of N×N pixels, 

∑
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A high covariance of two images usually implies cloud-free conditions in both images, whereas 
low covariance usually indicates presence of clouds in at least one of the images. Because 
covariance removes the average component of the signals, this metric is equally successful over 
the dark and bright surfaces and in both clear and hazy conditions if the surface spatial variability 
is still detectable from space. 

The core of the MAIAC CM algorithm is initialization and regular update of the reference clear-
skies image for every block. The refcm is initially built from a pair of images for which covariance 
is high, and caution is exercised to exclude correlated cloudy fields. The algorithm calculates a 
block-level covariance between the new Tile and the previous Tiles, moving backwards in the 
Queue until either the “head” of Queue is reached, in which case initialization fails and the 
algorithm would wait for the new data to arrive, or until clear conditions are found. The latter 
corresponds to high covariance (cov≥0.68) and low brightness temperature contrast in the block 
for both days, ∆BT=BTmax- BTmin<∆1. The initial value of threshold ∆1 is currently defined as 
∆1=25+dT(h) K. Factor dT(h) accounts for the surface height variations in the block and is defined 
for an average lapse rate, dT(h)=0.0045(hmax-hmin), where h (km) is surface height over the sea 
level. Once the image refcm is initialized, the algorithm begins to use the block-specific value of 
the brightness temperature contrast Q.∆BT, which is stored in the Q-memory. 

After initialization, the algorithm uses the refcm to compute covariance with the latest 
measurements. Once clear conditions are found, refcm and block-parameters {r1max; σ1; ∆BT} are 
updated. With this dynamic update, the refcm adapts to the gradual landcover changes related to 
the seasonal cycle of vegetation. The rapid surface change events (e.g., snowfall/ablation) are 
handled through repetitive re-initialization which is performed each time when covariance of the 
latest Tile with refcm is found to be low. 

Following the covariance calculation, the algorithm looks for clouds at the pixel level. For regular 
surfaces, not covered by snow, cloud detection is based on a simple postulate that clouds are 
usually colder and brighter than the surface: 
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IF (BTij < BTG – 4) AND (r1ij >refcm.r1ij+0.05) ⇒ CM_PCLOUD, 
where BTij is measured brightness temperature and r1ij is measured B1 reflectance. The reference 
surface reflectance for every pixel is provided by the refcm clear-skies image, whereas an estimate 
of the ground brightness temperature BTG comes either from the clear land pixels detected by a 
Dense Vegetation (or high NDVI) spectral test for a given block, or from the cloud-free neighbor 
blocks, identified by high covariance. 

The final values of the MAIAC CM are clear (CM_CLEAR, CM_CLEAR_WATER, 
CM_CLEAR_SNOW), indicating surface type as well, possibly cloudy (CM_PCLOUD), and 
confidently cloudy (CM_CLOUD). The value of CM_SHADOW is used for pixels defined as cloud 
shadows. Shadows are detected with a simple threshold algorithm which compares the latest 
MODIS measurement (ρmeas) with predicted reflectance (ρpred) based on the LSRT coefficients 
from the previous retrievals: 

IF ρmeas < ρpred-0.12 ⇒ CLOUD_SHADOW. 
The shadow algorithm uses MODIS band 5 (1.24 µm), which has little atmospheric distortion and 
is bright over land so that the change of reflectance due to cloud shadow is easy to detect above 
the noise level. 

The covariance component of MAIAC algorithm, which offers a direct way to identify clear 
conditions, renders another commonly used value of cloud mask – “possibly clear” – redundant. 
 
6.2. Performance of MAIAC CM Algorithm 
The algorithm performance has been tested at scales of 600-1800 km using the 2004-2005 MODIS 
TERRA data for northeastern USA, Southern Africa (Zambia), Amazon region (Brazil), Arabian 
peninsula, and Greenland. The testing was done for at least half a year of continuous data in each 
case, using visual analysis and comparison with MODIS Collection 5 operational cloud mask 
(MOD35). 

Figure 4 shows a case of cloud detection over receding snow for three winter days (36-37, 42) of 
2005 for the north-east USA. The area of the image is 600×600 km2. The two RGB images have a 
different normalization, helping visual distinction between snow and clouds. The MAIAC cloud 
mask is shown on the right, and the MODIS Collection 5 (MOD35) reprojected and gridded cloud 
mask is shown at the bottom. The conditions represent different degrees of cloudiness over the 
land. Day 35 is entirely cloud-free over land. MAIAC CM algorithm gives an accurate overall 
classification. Thin ice on Lake Erie is partly misclassified as clouds. It is not as bright as snow in 
the visible bands, and has a higher than snow reflectance in the shortwave infrared (2.1 µm). The 
same holds true for the block of land and some pixels in the transitional zone from snow to land, 
which are masked as clouds. As explained earlier, the error is expected in these cases. On day 36, 
MAIAC accurately detects a cloud stretching across Lake Erie. There are two large cloud systems 
on day 42, in the left upper and left bottom parts of the image, captured well by the algorithm. 
These images also show the strong retreat of the snow line by day 42, and a high quality of snow 
mapping by MAIAC. The MOD35 product accurately detects clouds, but it also overestimates 
cloudiness over snow on all three days, with the highest error on day 37. 

Figure 5 compares the cloud mask of the two algorithms for the late spring of 2005 for the same 
region. Over land, the accuracy is similar. Some difference exists with regards to thin cirrus, or 
otherwise semitransparent clouds. MAIAC CM does not explicitly try to mask these clouds. 
Created for the purpose of aerosol retrievals and atmospheric correction, the algorithm maximizes 
the volume of data available for the atmospheric correction. Our study shows that achievable 
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accuracy of surface reflectance retrievals through thin cirrus is sufficiently high [Lyapustin and 
Wang, 2007] but more investigation is necessary. Another notable difference is cloud detection 
over the water. The current version of algorithm had been developed for the land applications and 
cloud detection over water at this stage is rudimentary. 

A large-scale comparison of cloud mask products is shown in Figure 6 for a 1200×1200 km2 
region of the African Savannah (Zambia). This is a region of intense biomass burning in the dry 
season. The MAIAC and MOD35 cloud masks are generally comparable. MAIAC is a little more 
sensitive, detecting more clouds. One stark difference is the large number of “possibly clear” 
pixels in MOD35 when the algorithm cannot declare clear conditions with confidence. This 
category is not used in MAIAC, which has a covariance criterion and ancillary refcm data to 
identify clear conditions. This feature is particularly appealing to land applications, sometimes 
significantly increasing the volume of measurements, which may be confidently used in the 
atmospheric correction and in further applied analysis. 

A final example of the cloud mask comparison for the large (1800×1800 km2) bright desert area of 
the Arabian Peninsula is shown in Figure 7 for days 145 and 207 of 2005. Here, the MAIAC cloud 
mask is shown in the middle of image and the MOD35 product is shown on the bottom. Except for 
a few small differences, the products agree quite well for day 145. On day 207, MOD35 
overestimates cloudiness masking the dust storm areas as clouds. 

These examples show that MAIAC CM algorithm demonstrates a high accuracy of cloud 
discrimination over land. If offers potential improvements to the operational MODIS cloud mask 
when land surface changes rapidly, and over bright snow and ice. 

 

7. MAIAC Examples and Validation 
The MAIAC performance has been tested extensively for different world regions using 50×50 km2 
subsets of MODIS TERRA data centered on AERONET sites. Because the algorithm is 
synergistic and the quality of aerosol retrievals and atmospheric correction are mutually 
dependent, the testing includes analysis of all main components of the algorithm. We are using 
both visual analysis, which remains unsurpassed in complex quality assessments of imagery 
products, and direct validation of aerosol retrievals by AERONET described in sec. 7.1. One 
example of such testing is shown in Figure 8 for the Goddard Space Flight Center (GSFC), USA 
site. The image shows 15 successive MODIS TERRA observations for the end of June - early July 
(Fig. 8a), and for December (Fig. 8b) of 2000. The left two columns show MODIS top of 
atmosphere RGB reflectance. The images are normalized differently to help visual separations of 
clouds and aerosols from the surface signal. With the viewing geometry varying, the images 
collected at nadir have a better spatial resolution and contrast than those observed at the edge of 
scan (VZA~55o) despite aggregation to 1 km. This source of noise notwithstanding, the images 
display a well-reproducible spatial pattern in cloud-free conditions, which is the basis of the cloud 
mask algorithm. Because of the re-projection, the top-left and bottom-right corners appear not 
covered by measurements.   

Columns 3-7 and 9 show products of MAIAC processing: RGB NBRF (normalized BRF for the 
standard viewing geometry of VZA=0o, SZA=45o); cloud mask; RGB IBRF (instantaneous, or 
one-angle, BRF for the viewing geometry of latest observation); Blue band AOT (scale 0-1); 
spectral regression coefficients for the Blue and Red bands (scale 0.1-0.8); NBRF and MODIS 
L1B TOA reflectance for band B7 (2.1 µm) (scale 0-0.4).  
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The last column shows the ratio of volumetric concentrations of the coarse and fine aerosol 
fractions ( F

v
C
v CC / ). In these retrievals, values of Cv ratio η={0.5; 1; 2; 4; 10} were used, which 

are represented by colors magenta, blue, light blue, green and yellow, respectively. One more 
model used in the retrievals was a liquid water cloud model with the median droplet diameter of 5 
µm. The cloud model was used in aerosol retrievals together with aerosol models to detect residual 
clouds. Cases when this model was selected are shown in red. The aerosol model with η=10, 
which is a usually unrealistic combination of the fine and coarse fractions, was also used for cloud 
detection. Although this model may provide a similar to a cloud spectrally neutral extinction, it 
absorbs in the shortwave spectral region whereas the cloud does not. Overall, the aerosol retrievals 
provide a valuable enhancement to the cloud mask (yellow and red colors in the last column). 
Figure 8 shows detection of small popcorn clouds in summer (8a) and semitransparent clouds in 
winter (8b), as well as extensions on the cloud boundaries, which are difficult to detect by any 
specialized cloud mask algorithm. 

The NBRF and IBRF images are shown as true color RGB composites. The RGB images are 
produced using the Red (B1), Green (B4) and Blue (B3) channels with equal weights. One can see 
that the quality of atmospheric correction is generally good although there are still some artifacts 
related to aerosol retrievals, such as color distortions in the IBRF image (Fig. 8a, third row). The 
work is ongoing to resolve this and some other remaining issues of MAIAC algorithm. 

Columns 7-8 in Figure 8 show the derived spectral regression coefficients in the Blue and Red 
bands. These retrievals are temporally consistent during the short time interval. A comparison of 
the summer and winter seasons shows an obvious seasonal trend of SRCs. These retrievals can be 
validated indirectly by comparing aerosol results with the AERONET measurements. 

 

7.1 AERONET Validation 
Figures 9-10 show scatterplots of MAIAC AOT vs AERONET AOT in the Blue and Red bands. 
Following MODIS validation strategy [Remer et al., 2005], AERONET measurements are 
averaged over ±30 min interval of TERRA satellite overpass. MAIAC retrievals are averaged over 
20 km area. 

Figure 9 gives a comparison for the GSFC site. The overall agreement is good with relatively high 
correlation coefficient (r~0.78) and slopes of regression, which are close between the Blue and 
Red bands (0.88 and 0.85). The offset is positive in both bands (0.053 and 0.033, respectively). It 
can be explained by a limited sensitivity of the method at low AOT values, by residual cloud 
contamination, and by snow contamination in wintertime. The identification of pixels partially 
covered by snow is a very complex problem, and a small fraction of undetected snow may notably 
increase the retrieved AOT. In fact, snow is a significant source of bias in the MAIAC retrievals, as 
shown in the right plots, where winter days with snow on the ground were manually filtered. Snow 
filtering reduces the bias by a factor of 2 in the Blue band; it also increases correlation coefficient 
and slope of regression. 

Figure 10 compares MAIAC AOT with AERONET data for several large cities of the world with 
medium-to-high levels of pollution, including Moscow, Beijing, Mexico City and Sao Paulo. In 
addition to pollution, there are several dust storms per year over Beijing with dust blown from the 
nearest Gobi desert to the north of the city. MAIAC results compare well with the AERONET data 
for Moscow and Beijing with high correlation. There is considerably more scattering in the cases 
of Mexico City and Sao Paulo. One can see that the slopes of regression are high (~0.9-0.95) for 
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Moscow and Sao Paulo. In these cases, the MAIAC aerosol model with relatively low absorption 
works reasonably well. However, the slope of regression drops down to ~0.6-0.7 for Beijing and 
Mexico City, indicating that aerosol is significantly more absorbing.    

There is some correlation of noise in the retrievals over Mexico City and Sao Paulo with the 
viewing geometry, specifically in the forward vs backward scattering directions. MAIAC tends to 
underestimate AOT in the forward scattering directions and overestimate it for the backscattering 
view geometry. One possible explanation of this behavior is an uncompensated surface BRF 
effect. Over bright surfaces, such as Mexico City and Sao Paulo, the shape of BRF seems to be 
more anisotropic in the visible bands than in the SWIR, which is also brighter. We plan to address 
this issue in further research. 

 

7.2 Examples of MAIAC Aerosol Retrievals  
At present, we have evaluated performance of MAIAC over the different world regions for an 
extended period of time. Typically, we order MODIS data for large areas of several thousand 
square kilometers for at least one year, and process the full set of data. Two examples of the large-
scale AOT retrievals from MODIS TERRA are shown in Figures 11-12. Figure 11 shows smoke 
from biomass-burning during the dry season over an area of 1200×1200 km2 in Zambia, Africa. 
The TOA image for the day 205 shows dozens of small-to-large fires. The fine 1 km resolution 
allows MAIAC to resolve and trace plumes of the individual fires. The fire plumes disappear at the 
coarse 10 km resolution of operational MODIS aerosol product MOD04 shown on the inset. The 
comparison shows that the magnitude of MOD04 and MAIAC retrieved AOT and its spatial 
distribution is rather similar, although there are certain differences depending on the surface type 
and geometry of observations. This particular example shows that through significantly higher 
spatial resolution, MAIAC offers quantitatively new information about aerosols and their sources 
unavailable before. The gradient of AOT at 1 km resolution is high enough to implement an 
automatic delineation algorithm for the smoke plume detection, with the data that could be used in 
different applications, such as air quality. 

Another example of MAIAC aerosol retrievals over a large portion of bright Arabian Peninsula 
(area 1800×1800 km2) for day 207 of 2005 is shown in Figure 12. The conditions are rather 
complex on this day: on one hand, the dust is transported across the Red Sea from Sudan (Africa). 
The wind does not penetrate the mountains along peninsular’s western shore. The conditions are 
clear on the top of the mountain ridge, and the dust is concentrated along the shore, as can be seen 
both from the MODIS RGB image and from the AOT image. On the other hand, a separate 
internal dust storm has developed in the southern part of peninsula, with winds carrying dust in the 
north-west direction. For comparison, Figure 13 shows the true color RGB image of the surface 
NBRF for this area. The bright surface feature, corresponding to the epicenter of the dust storms, 
is absent on the NBRF image, which confirms that this event is indeed a local dust storm. 

 

8. Concluding Remarks 
 
MAIAC is a new algorithm which uses a time series processing and combines an image- and pixel-
level processing. It includes cloud mask and generic aerosol-surface retrieval algorithm. The suite 
of MAIAC products includes column water vapor, cloud mask, dynamic mask of standing water 
and snow, AOT at 0.47 µm and Angstrom exponent (or the ratio of volumetric concentrations of 
the coarse and fine fractions), and spectral surface reflectance metrics, which include LSRT 
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coefficients, albedo, NBRF and IBRF. The suite of products is generated in a systematic and 
mutually consistent way to observe the energy conservation principle. In other words, the radiative 
transfer calculation with the given set of parameters closely corresponds to measurements. All 
products are produced in gridded format at the resolution of 1 km. 

A high spatial resolution of MAIAC (1 km vs 10 km for operational MODIS aerosol product) 
allows a new type of analysis and applications. One demonstrated example is a possibility of 
detection and tracing fire plumes from biomass burning. A high resolution of 1 km makes this 
application possible, whereas most of the information disappears at coarse 10 km resolution. We 
plan to apply MAIAC to study aerosol and their sources over large urban centers to complement 
the air quality analysis. 

The current performance of the algorithm is not yet fully optimized. Nevertheless, MAIAC is 
already sufficiently fast for operational processing: it takes ≈50 sec. of one single-core AMD 
Opteron-64 processor to process one Tile (600×600 km2) of MODIS data. The operational testing 
of MAIAC is planned to begin in second half of 2008 in collaboration with the University of 
Wisconsin and GSFC-based MODIS land processing team.  
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FIGURES 
 
 

 
Figure 1. Block-diagram of MAIAC algorithm. The initial capital letters indicate spatial and 

temporal domains of operations, for example at pixel- (P) or/and block- (B) level, and using 
the data of the last Tile only (LT) or using the full time series of the Queue (Q). 
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Figure 2. Structure of Queue for ASRVN processing. The Queue, designed for the sliding window 
algorithm, stores up to 16 days of gridded MODIS observations at 1 km resolution. The CM 
algorithm uses MODIS bands 1-7 and band 31, which are stored as Layers (double-indexed 
arrays) shown in the upper-left corner. A dedicated Q-memory is allocated to store the ancillary 
information for CM algorithm, such as a reference clear-skies image (refcm), block-level statistical 
parameters {r1max; σ1; ∆BT}, and results of dynamic Land-Water-Snow classification 
(mask_LWS). This information is updated with latest measurements (day L) once given block is 
found cloud-free, thus adapting to changing surface conditions. The Q-memory also stores results 
of previous reliable BRF retrievals for MODIS bands 1-7.  
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Figure 3. Block-diagram of MAIAC atmospheric correction algorithm. 
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Figure 4. Example of MAIAC (3d row) and MOD35 (bottom) cloud mask over snow from MODIS TERRA 

for days 36, 37 and 42 of 2005. The image shows 1 Tile (600×600 km2) for the north-east USA. The 
top two RGB images have a different normalization helping visual distinction between snow and 
clouds. Legend for MOD35 CM: Blue – clear, Green – possibly clear, Yellow – possibly cloudy, Red – 
cloudy, Black - undefined. Legend for MAIAC CM: Blue, Light Blue, and White – clear (land, water 
and snow, respectively), Yellow – possibly cloudy, Red – cloudy. 

Lake Erie 
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Figure 5. Example of MAIAC (middle) and MOD35 (bottom) cloud mask from MODIS TERRA 
data for days 138 (left) and 152 (right) of 2005. The image shows the same Tile (north-east USA) 
as in Figure 4. 
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Figure 6. Example of MAIAC (middle) and MOD35 (bottom) cloud mask at the beginning of dry 

season for Zambia, Africa, from MODIS TERRA data for days 130 (left) and 141 (right) of 
2005. The image shows 4 Tiles (1200×1200 km2). 

Lake Kariba 
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Figure 7. Example of MAIAC (middle) and MOD35 (bottom) cloud mask for Arabian Peninsula 

from MODIS TERRA data for days 145 (left) and 207 (right) of 2005. The image shows 9 
Tiles (1800×1800 km2).  
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   TOA RGB        NBRF     CM      IBRF   AOT            SRC          NBRF7  TOA7    CvR        

 

                   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Figure 8a. Example of MAIAC processing for 50 km MODIS TERRA subsets for the GSFC site. 

Shown are 15 consecutive observations for days 175-189 of 2000. The left two columns show 
differently normalized TOA RGB MODIS gridded reflectance. Next, shown are the following 
MAIAC products: RGB NBRF; cloud mask; RGB IBRF; AOT at 0.47 µm (scale 0-1); spectral 
regression coefficients for the blue and red bands (scale 0.1-0.8); NBRF and MODIS L1B 
TOA reflectance for band B7 (2.1 µm) (scale 0-0.4); ratio of volumetric concentrations 
( F

v
C
v CC / ). The color bar is shown for SRCs. 
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Figure 8b. Example of MAIAC processing for the GSFC site, days 337-349 of 2000. The dark red 

color in CM image shows detected cloud shadows. 
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                                   GSFC, full dataset                                                                GSFC, except winter 

 
Figure 9. Comparison of MAIAC AOT with AERONET data for GSFC (USA) using MODIS 

TERRA data for 2000-2007. The left plots for both Blue (B, 0.47 µm) and Red (R, 0.64 µm) 
bands shows the full dataset (740 points). The right plot shows the reduced dataset where 
winter days with snow on ground were filtered (587 points). 
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                                  Mexico City, Mexico                                                                 Sao Paulo, Brazil 

 
 
Figure 10. Comparison of MAIAC AOT with AERONET data for Moscow (2001-2007, 238 

points), Beijing (2001-2007, 504 points), Mexico City (2000-2007, 342 points) and Sao Paulo 
(2000-2007, 327 points), using MODIS TERRA data.  
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Figure 11. Fires during dry biomass-burning season in Zambia, Africa, for day 205 of 2005 (area 
1200×1200 km2). The 1km gridded MODIS TERRA TOA RGB image is shown on the left and 
MAIAC-retrieved AOT at 0.47 µm is on the right. The AOT scale is the same for MOD04 and 
MAIAC. The high resolution (1 km) of AOT product allows detecting and tracing individual fire 
plums. The inset shows result of the MODIS dark target algorithm MOD04_C4. 
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Figure 12. MODIS TERRA RGB TOA image and MAIAC AOT at 0.47 µm over Arabian 

Peninsula (area 1800×1800 km2) for day 207 of 2005. 
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Figure 13. RGB image of surface NBRF (BRF for a fixed geometry, VZA=0o, SZA=45o) for 
Arabian Peninsula for day 184 of 2005. The image is built with equal weights for RGB bands.    
 
 
 
 
 
 


